Raman-encoded microbeads for spectral multiplexing with SERS detection
نویسندگان
چکیده
Simultaneous detection of multiple molecular targets can greatly facilitate early diagnosis and drug discovery. Encoding micron-sized beads with optically active tags is one of the most popular methods to achieve multiplexing. Noble metal nanoparticle labels for optical detection by surface-enhanced Raman spectroscopy (SERS) exhibit narrow bandwidths, high photostability and intense Raman signals. In this study, we demonstrate the feasibility of spectral multiplexing by SERS using micron-sized polystyrene (PS) beads loaded with SERS-active nanoparticles. The silica-encapsulated SERS nanotags comprise gold nanocrystals with a self-assembled monolayer (SAM) of aromatic thiols as Raman reporter molecules for spectral identification. SERS microspectroscopic images of single Raman-encoded PS microbeads indicate the homogeneous spatial distribution of the SERS-active nanoparticles on the surface of the beads. By using up to five different Raman reporters, 31 spectrally distinct micron-sized beads were encoded and characterized spectroscopically at the single-bead level.
منابع مشابه
Fluorescence-based multiplex protein detection using optically encoded microbeads.
Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing ass...
متن کاملMultiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy.
Raman spectroscopy is a newly developed, noninvasive preclinical imaging technique that offers picomolar sensitivity and multiplexing capabilities to the field of molecular imaging. In this study, we demonstrate the ability of Raman spectroscopy to separate the spectral fingerprints of up to 10 different types of surface enhanced Raman scattering (SERS) nanoparticles in a living mouse after s.c...
متن کاملA Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles
The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman d...
متن کاملEncoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles.
Peptides synthesized on microbeads were encoded by chemically and physically adsorbing surface-enhanced Raman spectroscopic nanoparticles (SERS dots) on the microbead surface during the synthesis, which could be easily and rapidly decoded by Raman spectroscopy.
متن کاملRational design and synthesis of SERS labels.
SERS labels are a new class of nanotags for optical detection based on Raman scattering. Central advantages include their spectral multiplexing capacity due to the small line width of vibrational Raman bands, quantification based on spectral intensities, high photostability, minimization of autofluorescence from biological specimens via red to near-infrared (NIR) excitation, and the need for on...
متن کامل